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We present an analysis of second-order and third-order nonlinear susceptibilities and wave-mixing properties
of negative refractive index materials. We show that the nonlinear susceptibilities for noncentrosymmetric and
centrosymmetric media may be positive or negative and away from resonance depending on the frequency of
interest relative to the resonant frequencies of the material. Manipulation of the signs of the nonlinear suscep-
tibilities is important in the field of optics, particularly for solitons and compensation of nonlinear effects. We
also show that three- and four-wave mixing can be naturally phase matched in the material.
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Beginning with the early studies of Mandelstam �1,2�,
considerable attention has been given to the concept of nega-
tive index of refraction. Fundamental features of negative
index materials have been explored in these early references
and elsewhere �3�, and basic issues related to negative group
velocity, negative permittivity, and permeability, and conse-
quently to negative index of refraction, have also been ad-
dressed �4,5�. Moreover, a variety of novel concepts such as
refraction without reflection, the reversed Doppler effect, and
subdiffraction imaging have been proposed and explored �3�.
Negative refraction and its related ideas have been experi-
mentally realized and extensively analyzed in recent years
�6–9�. Nonlinear effects in negative index materials have
also received attention. Among them we mention here struc-
tures with metamaterials embedded in nonlinear positive
dielectrics �10�, derivation of a generized nonlinear
Schrödinger equation that can be applied to left-handed
metamaterials �11�, and studies of solitons in left-handed me-
dia �12,13�. In this paper, we explore another aspect of non-
linear wave properties of negative index materials, namely
their effective nonlinear susceptibilities and wave-mixing
properties based on the Lorentz anharmonic oscillator model.

Nonlinear media with negative index of refraction have a
variety of potential applications. We propose that negative
index media may be used to perform nonlinearity compensa-
tion without optical phase conjugation if the sign of ��3� is
negative. The concept of nonlinearity compensation using a
medium with a negative nonlinear refractive index coeffi-
cient was suggested in Ref. �14�. One of the major advan-
tages of using negative index media for nonlinearity com-
pensation is that there need not be wavelength translation,
which is one of the accompanying features in optical phase
conjugation: wavelength translation forces communication
systems to have more complicated schemes for wavelength
management. Devices based on such nonlinear media may be
of great importance for nonlinearity management in optical
communication systems for the purpose of increasing the
transmission reach and system performance �15�. Another
potential application is the use of the negative index medium
to support bright solitons �16�.

In this paper, we explore the effective nonlinear suscepti-

bility and wave-mixing properties of negative refractive in-
dex centrosymmetric and noncentrosymmetric media. We
present the second-order ��2� and third-order ��3� nonlinear
susceptibilities of the aforementioned media based on the
classical anharmonic oscillator model and then go on to dis-
cuss the phase-matching properties that arise from nonlinear
wave mixing in such media. An important result that has
emerged from our analysis is that perfect phase matching is
possible in three- and four-wave mixing if at least one of the
interacting waves exhibits a negative index of refraction.
Furthermore, we find that the signs of the susceptibilities can
be engineered by specifying appropriately the frequencies of
the interacting waves.

We examine here one-dimensional electromagnetic wave
propagation in a lossless optical medium that we model in
terms of nonlinear dipole oscillators. Both quadratic and cu-
bic nonlinearities of noncentrosymmetric and centrosymmet-
ric media will be explored. We assume that the propagation
is parallel to the z axis of an �x ,y ,z� Cartesian coordinate
system. The electric field, E�z , t�=E�z , t�x̂, is parallel to the x
axis, while the magnetic field, B�z , t�=B�z , t�ŷ, is parallel to
the y axes. The following equation is found to govern E�z , t�:
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where �0 is the vacuum permittivity, PNL�z , t� is the nonlinear
part of the polarization, and the frequency-dependent mag-
netic permeability, ����, and electric susceptibility, ����,
are the Fourier transforms of ��t� and ��t�, respectively,
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The electric permittivity is ����=�0�1+�����, where �0 is
the vacuum permittivity. Causality requires that ��t−�� and
��t−�� vanish for �� t.

Our description of negative refractive index media is
based on the lossless anharmonic oscillator Lorentz model
similar to that of Owyoung �17� and Boyd �18� for positive
index media. The Lorentz oscillator model may apply not*Electronic address: arefc@bell-labs.com
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only for homogeneous media but also for composite media
�19�. In this model, the polarization P�z , t� is related to the
wave electric field by the following equations:

P = − qNz,
d2z

dt2 + �0
2z + az2 = −

q

m
E

for noncentrosymmetric media, �3�

P = − qNz,
d2z

dt2 + �0
2z − bz3 = −

q

m
E

for centrosymmetric media, �4�

where q and m are, respectively, the charge and mass of the
oscillating particle, N is the particle density, �0 is the oscil-
lation frequency of the linear dipole motion, and a and b are
constants that govern the strength of the nonlinear restoring
forces acting on the particle. In Eqs. �3� and �4�, we used the
macroscopic electric field that appears in Maxwell’s equa-
tions. This is a simplifying assumption that is reasonable for
a low density of dipoles. For dense media, local field correc-
tions would have to be taken into account �18�. If nonlinear
effects are neglected in Eq. �1� by setting PNL=0, the result-
ing linear equation has harmonic solutions of the form
E�z , t��exp�i��t−kz��, where the frequency � and the wave
number k satisfy the dispersion relation,

k2 =
�2n2���

c0
2 , n��� =	����

�0

����
�0

. �5�

In Eq. �5�, c0 is the vacuum speed of light and n��� is the
index of refraction of the dispersive medium. For a given �,
the dispersion relation yields two roots for the wave number,
k���= ±�n��� /c0, one of which is a propagating mode with
a positive phase velocity and the other is a propagating mode
with a negative phase velocity. The permittivity that follows
from the linearized Lorentz equations and the permeability
that has typically been used in past studies of left-handed
materials �20,21� read, respectively,

���� = �0
�2 − �a

2

�2 − �0
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�2 − �b
2

�2 − �2 , �6�

where �a
2=�0

2+�p
2, �p is the plasma frequency of the me-

dium, and �b and � are real characteristic frequencies of the
permeability. Equations �5� and �6� then yield the wave num-
ber and the index of refraction,

k��� = ±
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2�

��2 − �0
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,
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A plot of the dispersion relation � versus k is presented in
Fig. 1 for the case �	�0	�b	�a. It is seen that �a and �b
are cutoff frequencies, while �0 and � are resonances. Im-
portant for our analysis is the existence of two negative wave
branches in the frequency range �0	�	�b, one associated
with each sign of Eq. �7�. The index of refraction n��� in the

negative wave branches is negative, while the group speed
d� /dk and the phase speed � /k are of opposite signs. The
index of refraction is positive for 0	�	� and �a	�. The
sign of n��� is readily established by assuming that � in Eq.
�7� is a complex variable with a negative imaginary part and
letting Im���→0, a procedure that implies causality. Finally,
there are two frequency ranges with evanescent waves,
�b	�	�a and �	�	�0.

We now explore nonlinear interactions in a negative
index medium. Assuming a linear combination of
harmonic waves with slowly varying envelopes A�z ,�m�,
E�z , t�=
�m

A�z ,�m�ei��mt−kmz�, where the frequency �m and
the wave number km are related by the dispersion character-
istics shown in Fig. 1. If a finite number of mode frequencies
are in resonance, the waves interact strongly. Under this con-
dition, the associated envelopes are governed by coupled
first-order nonlinear differential equations. The focus of our
analysis will be on the frequency resonance conditions and
nonlinear susceptibilities when at least one mode exhibits a
negative index of refraction. This occurs if the wave fre-
quency lies between �0 and �b in Fig. 1.

We begin with the nonlinear interaction of three waves
with frequencies �1�k1�, �2�k2�, and �3�k3� that satisfy the
energy and momentum resonance conditions, respectively,

�3�k3� = �1�k1� + �2�k2�, k3 = k1 + k2. �8�

The condition for phase matching �momentum� cannot be
satisfied in normal dispersive materials because the index of
refraction increases with �. Although birefringence, quasi-
phase-matching �22�, and M-waveguides �23� have been suc-
cessfully applied to achieve phase matching, it would be
preferable that phase matching be realizable without the ne-
cessity of the aforementioned techniques. We have carried
out a series of computations that demonstrate that the fre-
quency resonance condition and perfect phase matching can
be satisfied in our model if at least one wave has a negative
refractive index. Results are presented in Figs. 2–6 as plots
of �̄1 versus �̄2 such that Eq. �8� is satisfied. A bar over a

FIG. 1. �Color online� Graphical depiction of the dispersion dia-
gram � vs k defined by Eq. �7� with �	�0	�b	�a. Three
propagating branches exist: upper branch, negative index branch,
and lower branch.
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frequency variable signifies normalization with respect to �a.
To construct these plots, frequencies �1 and �2 are assumed
to lie on any of the three propagating frequency bands shown
in Fig. 1. With k2 held fixed, k1 is varied until the frequency
�3�k3�=�3�k1+k2� also lies in a propagating band. The wave
numbers k1 and k2, as well as k3=k1+k2, can take on positive
and negative values. This process is tantamount to solving
the nonlinear algebraic equation �3�k1+k2�=�1�k1�+�2�k2�
for k1 for a specified value of k2. A color code is used in the
plots to identify sections where wave 3 is either a forward or
a backward propagating wave. We adopt the definition that a
wave is forward propagating if its group velocity is positive

and backward propagating if its group velocity is negative.
Along a red section labeled with solid points ���, wave 3 is
backward propagating and the wave number is labeled k3

�b�;
along a blue sector labeled with open points ���, wave 3 is
forward propagating and the wave number is k3

�f�.
Figure 2 depicts a case with wave 1 on the upper positive

index branch and wave 2 on the negative index branch, while
wave 3 appears on the upper positive index branch. Wave 3
in this case is backward propagating. In this wave configu-
ration, a positive index wave is excited by mixing a positive

FIG. 2. �Color online� Plot of �̄1 vs �̄2 such that the resonance
conditions given by Eq. �8� are satisfied. Wave 1 is on the upper
branch, wave 2 is on the negative branch, and wave 3 is on the
upper branch with negative group velocity. The medium parameters

are �̄=0.3, �̄0=0.4, �̄b=0.9, and �̄a=1.0.

FIG. 3. �Color online� Plot of �̄1 vs �̄2 such that the resonance
conditions given by Eq. �8� are satisfied. Waves 1 and 2 are on the
lower branch, while wave 3 is on the negative branch with negative

group velocity. The medium parameters are �̄=0.3, �̄0=0.4, �̄b

=0.9, and �̄a=1.0.

FIG. 4. �Color online� Plot of �̄1 vs �̄2 such that the resonance
conditions given by Eq. �8� are satisfied. Wave 1 is on the negative
branch, wave 2 is on the negative branch, and wave 3 is on the
upper branch with negative group velocity. The medium parameters

are �̄=0.3, �̄0=0.4, �̄b=0.9, and �̄a=1.0.

FIG. 5. �Color online� Plot of �̄1 vs �̄2 such that the resonance
conditions given by Eq. �8� are satisfied. Wave 1 is on the lower
branch, wave 2 is on the negative branch, and wave 3 is on the
upper branch. Note the “teardrop” shape of the curve. Also note that
the group velocity for wave 3 may be positive or negative depend-

ing on the input frequencies. The medium parameters are �̄=0.55,
�̄0=0.6, �̄b=0.8, and �̄a=1.0.
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index wave with a negative index wave. Figure 3 illustrates
the mixing of two positive index waves to produce a nega-
tive index wave. Waves 1 and 2 are both on the lower posi-
tive index branch, while the resulting wave 3 is on the nega-
tive index branch. Two negative index waves can also mix to
excite a positive index wave. This case is illustrated in Fig. 4,
where waves 1 and 2 are on the negative index branch. The
excited wave 3 is backward propagating on the upper posi-
tive index branch. The configuration in Fig. 5 is interesting
because the �̄1 versus �̄2 plot is a closed curve in the form of
a “teardrop.” Waves 1 and 2 are on the lower positive index
branch and the negative index branch, respectively. Wave 3
is on the upper positive index branch. Observe that both
forward and backward propagating waves can be excited in
this case. Figure 6 illustrates the mixing of a positive index
wave and a negative index wave to produce a negative index
wave. Wave 1 is on the lower positive index branch, wave 2
is on the negative index branch, and the resulting wave 3 is
on the negative index branch. Forward and backward propa-
gating waves exist in this case.

The interaction of the three waves in resonance is gov-
erned by the nonlinear susceptibilities of the medium. These
nonlinear coefficients may be positive or negative depending
on the frequencies of the interacting waves relative to the
resonant frequency �0 of the material. For the noncen-
trosymmetric medium governed by Eq. �3�, the second-order
nonlinear susceptibility ��2���m ,�n ,�q� for three-wave mix-
ing can be derived as �18�

��2���q,�m,�n� =
a�Nq3/m2�

D��m�D��n�D��q�
, �9�

where �q=�m+�n and D�����0
2−�2. The sign of

��2���q ,�m ,�n� is determined by the sign of the triple prod-
uct D��m�D��n�D��q�, which in turn is determined by the

sign of the D���: D��� is negative if �2��0
2 and positive if

�2	�0
2. Thus, the sign of the second-order nonlinear suscep-

tibility can be engineered by specifying appropriately the
values of the input frequencies �m and �n relative to the
resonance frequency �0. For example, if �m

2 and �n
2 are both

less than �0
2 while �q

2 exceeds �0
2, ��2���q ,�m ,�n� will be

negative. On the other hand, ��2���q ,�m ,�n� will be positive
if �m

2 and �n
2 exceed �0

2 while �q
2 is less than �0

2. It is readily
established that ��2���q ,�m ,�n� is negative for the wave-
mixing processes depicted in Figs. 2–4 and positive for the
processes depicted in Figs. 5 and 6.

The preceding analysis treats three-wave mixing in a non-
centrosymmetric dispersive medium with a negative index
wave. Four-wave mixing in the presence of a negative index
wave is also possible, in either centrosymmetric or noncen-
trosymmetric media. The analysis of four-wave mixing is
similar to that of three-wave mixing. A linear combination of
interacting waves is assumed. Four waves interact strongly
when the frequencies satisfy the resonance conditions,

�4�k4� = �1�k1� + �2�k2� + �3�k3�, k4 = k1 + k2 + k3.

�10�

For a centrosymmetric nonlinear medium, the mixing pro-
cess is governed by Eq. �4�. The third-order nonlinear sus-
ceptibility that is derived from this equation reads �18�

��3���s,�m,�n,�q� �
b�Nq4/m3�

D��m�D��n�D��q�D��s�
,

�s = �m + �n + �q. �11�

For a noncentrosymmetric medium, which Eq. �3� governs,
��3���s ,�m ,�n ,�q� has a form similar to but somewhat more
complicated than Eq. �11�. We treat here only the centrosym-
metric medium. Most general results that we find can readily
be extended to the noncentrosymmetric medium. We have
performed computations of Eq. �10� with waves 1, 2, and 3
on the lower positive index branch of Fig. 1. The wave num-
bers of the three waves are positive. The resonance condi-
tions of Eq. �10� yield a fourth wave that lies on the negative
index branch between with k4�0. Because k4 is positive, the
negative index wave has a negative group velocity. The nu-
merical values of the normalized frequencies and wave num-

bers in our computations are the following: ��̄1 , k̄1�
= �0.10,0.83�, ��̄2 , k̄2�= �0.15,1.37�, ��̄3 , k̄3�= �0.20,2.22�,
and ��̄4 , k̄4�= �0.45,4.42�. For these computations, the four
characteristic frequencies of the model, normalized to the

cutoff frequency �a, have the following values: �̄=0.3, �̄0
=0.4, �̄b=0.9, and �̄a=1.0. The negative index branch lies in
the frequency range 0.4	�̄	0.9.

It is important to determine the sign of
��3���4 ,�1 ,�2 ,�3� because of its strong effect on the
wave amplitudes. From Eq. �11�, we can see that
��3���4 ,�1 ,�2 ,�3� can take on positive or negative
values depending on the net sign of the product
D��1�D��2�D��3�D��4�. In the aforementioned numerical
example of four-wave mixing, the coefficients D��1�, D��2�,
and D��3� are positive, while D��4� is negative. Therefore,

FIG. 6. �Color online� Plot of �̄1 vs �̄2 such that the resonance
conditions given by Eq. �8� are satisfied. Wave 1 is on the lower
branch, wave 2 is on the negative branch, and wave 3 is on the
negative branch. Note that the group velocity for wave 3 may be

positive or negative. The medium parameters are �̄=0.3, �̄0=0.4,
�̄b=0.9, and �̄a=1.0.
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��3���4 ,�1 ,�2 ,�3� is negative. Other wave configurations
that achieve a negative third-order nonlinear susceptibility
are also possible. In summary we find that the sign of
��3���4 ,�1 ,�2 ,�3� can be reversed if a negative index wave
is present in the third-order mixing process.

Negative ��3� produced by the aforementioned technique
can be useful in reversing pulse distortion due to nonlineari-
ties, as mentioned earlier. Negative ��3� has been experimen-
tally produced in semiconductors �24�. However, to do this,
it is necessary to operate in the spectral vicinity of the fun-
damental absorption edge, which has the disadvantage of
two-photon absorption effects. Our technique based on
propagation in negative index media avoids these disadvan-
tages.

In conclusion, we have shown novel nonlinear wave-
mixing and susceptibility properties of negative refractive
index materials and the potential benefits in the areas of op-
tical communication and solitons. As negative index media

move more toward the optical regime �25� and research con-
tinues in reducing their losses �26�, the nonlinear properties
of these media will be of great interest. As research
progresses in nonlinearities of negative refractive index me-
dia, novel nonlinear optical signal processing capabilities
will emerge that either have no counterparts or are very dif-
ficult to realize in the positive index world. As a final com-
ment, we point out that the nonlinear interactions with nega-
tive index waves that we have explored here are not unique
to dispersive optical media. They will likely occur in any
media that have gaps in the linear dispersion characteristics
resulting from periodicities. An example of such media
would be a hot magnetized plasma �27�.
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